SLMOML: Online Metric Learning With Global Convergence
نویسندگان
چکیده
منابع مشابه
Online Learning with an Unknown Fairness Metric
We consider the problem of online learning in the linear contextual bandits setting, but in which there are also strong individual fairness constraints governed by an unknown similarity metric. These constraints demand that we select similar actions or individuals with approximately equal probability [Dwork et al., 2012], which may be at odds with optimizing reward, thus modeling settings where...
متن کاملGlobal convergence of online limited memory BFGS
Global convergence of an online (stochastic) limited memory version of the Broyden-FletcherGoldfarb-Shanno (BFGS) quasi-Newton method for solving optimization problems with stochastic objectives that arise in large scale machine learning is established. Lower and upper bounds on the Hessian eigenvalues of the sample functions are shown to suffice to guarantee that the curvature approximation ma...
متن کاملWhy Global Performance is a Poor Metric for Verifying Convergence of Multi-agent Learning
Experimental verification has been the method of choice for verifying the stability of a multi-agent reinforcement learning (MARL) algorithm as the number of agents grows and theoretical analysis becomes prohibitively complex. For cooperative agents, where the ultimate goal is to optimize some global metric, the stability is usually verified by observing the evolution of the global performance ...
متن کاملNonparametric Online Regression while Learning the Metric
We study algorithms for online nonparametric regression that learn the directions along which the regression function is smoother. Our algorithm learns the Mahalanobis metric based on the gradient outer product matrix G of the regression function (automatically adapting to the effective rank of this matrix), while simultaneously bounding the regret —on the same data sequence— in terms of the sp...
متن کاملSOML: Sparse Online Metric Learning with Application to Image Retrieval
Image similarity search plays a key role in many multimedia applications, where multimedia data (such as images and videos) are usually represented in highdimensional feature space. In this paper, we propose a novel Sparse Online Metric Learning (SOML) scheme for learning sparse distance functions from large-scale high-dimensional data and explore its application to image retrieval. In contrast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2018
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2017.2726526